Bounded generation of S-arithmetic subgroups of isotropic orthogonal groups over number fields

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The number of Fuzzy subgroups of some non-abelian groups

In this paper, we compute the number of fuzzy subgroups of some classes of non-abeilan groups. Explicit formulas are givenfor dihedral groups $D_{2n}$, quasi-dihedral groups $QD_{2^n}$, generalized quaternion groups $Q_{4n}$ and modular $p$-groups $M_{p^n}$.

متن کامل

Elementary Subgroups of Relatively Hyperbolic Groups and Bounded Generation

Let G be a group hyperbolic relative to a collection of subgroups {Hλ, λ ∈ Λ}. We say that a subgroup Q ≤ G is hyperbolically embedded into G, if G is hyperbolic relative to {Hλ, λ ∈ Λ} ∪ {Q}. In this paper we obtain a characterization of hyperbolically embedded subgroups. In particular, we show that if an element g ∈ G has infinite order and is not conjugate to an element of some Hλ, λ ∈ Λ, th...

متن کامل

Isotropic nonarchimedean S-arithmetic groups are not left orderable

If Os is the ring of S-integers of an algebraic number field F, and 0,s has infinitely many units, we show that no finiteindex subgroup of SL(2, Os) is left orderable. (Equivalently, these subgroups have no nontrivial orientation-preserving actions on the real line.) This implies that if G is an isotropic F-simple algebraic group over an algebraic number field F, then no nonarchimedean S-arithm...

متن کامل

Elementary Subgroups of Isotropic Reductive Groups

Let G be a not necessarily split reductive group scheme over a commutative ring R with 1. Given a parabolic subgroup P of G, the elementary group EP (R) is defined to be the subgroup of G(R) generated by UP (R) and UP−(R), where UP and UP− are the unipotent radicals of P and its opposite P −, respectively. It is proved that if G contains a Zariski locally split torus of rank 2, then the group E...

متن کامل

Trees and Discrete Subgroups of Lie Groups over Local Fields

Let K be a locally compact field and G a simple AT-group, G = G(K). A discrete subgroup T of G is called a lattice if G/F carries a finite G-invariant measure. It is a uniform (or cocompact) lattice if G/T is compact and nonuniform otherwise. When the jRf-rank of G is greater than one, Margulis [Ma, Z] proved that T is arithmetic, establishing the conjecture of Selberg and PiatetskiShapiro. Thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2006

ISSN: 0022-314X

DOI: 10.1016/j.jnt.2005.10.006