Bounded generation of S-arithmetic subgroups of isotropic orthogonal groups over number fields
نویسندگان
چکیده
منابع مشابه
The number of Fuzzy subgroups of some non-abelian groups
In this paper, we compute the number of fuzzy subgroups of some classes of non-abeilan groups. Explicit formulas are givenfor dihedral groups $D_{2n}$, quasi-dihedral groups $QD_{2^n}$, generalized quaternion groups $Q_{4n}$ and modular $p$-groups $M_{p^n}$.
متن کاملElementary Subgroups of Relatively Hyperbolic Groups and Bounded Generation
Let G be a group hyperbolic relative to a collection of subgroups {Hλ, λ ∈ Λ}. We say that a subgroup Q ≤ G is hyperbolically embedded into G, if G is hyperbolic relative to {Hλ, λ ∈ Λ} ∪ {Q}. In this paper we obtain a characterization of hyperbolically embedded subgroups. In particular, we show that if an element g ∈ G has infinite order and is not conjugate to an element of some Hλ, λ ∈ Λ, th...
متن کاملIsotropic nonarchimedean S-arithmetic groups are not left orderable
If Os is the ring of S-integers of an algebraic number field F, and 0,s has infinitely many units, we show that no finiteindex subgroup of SL(2, Os) is left orderable. (Equivalently, these subgroups have no nontrivial orientation-preserving actions on the real line.) This implies that if G is an isotropic F-simple algebraic group over an algebraic number field F, then no nonarchimedean S-arithm...
متن کاملElementary Subgroups of Isotropic Reductive Groups
Let G be a not necessarily split reductive group scheme over a commutative ring R with 1. Given a parabolic subgroup P of G, the elementary group EP (R) is defined to be the subgroup of G(R) generated by UP (R) and UP−(R), where UP and UP− are the unipotent radicals of P and its opposite P −, respectively. It is proved that if G contains a Zariski locally split torus of rank 2, then the group E...
متن کاملTrees and Discrete Subgroups of Lie Groups over Local Fields
Let K be a locally compact field and G a simple AT-group, G = G(K). A discrete subgroup T of G is called a lattice if G/F carries a finite G-invariant measure. It is a uniform (or cocompact) lattice if G/T is compact and nonuniform otherwise. When the jRf-rank of G is greater than one, Margulis [Ma, Z] proved that T is arithmetic, establishing the conjecture of Selberg and PiatetskiShapiro. Thi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Number Theory
سال: 2006
ISSN: 0022-314X
DOI: 10.1016/j.jnt.2005.10.006